PHYSICAL REVIEW E 74, 021108 (2006)

Dynamical origin of memory and renewal

R. Cakir,' P. Grigolini,"*? and A. A. Krokhin'

Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203, USA
2Diparl‘imem‘o di Fisica dell’Universita di Pisa and INFM, via Buonarroti 2, 56127 Pisa, Italy
3Istituto dei Processi Chimico Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
(Received 24 June 2005; revised manuscript received 5 May 2006; published 8 August 2006)

We show that the dynamic approach to fractional Brownian motion (FBM) establishes a link between a
non-Poisson renewal process with abrupt jumps resetting to zero the system’s memory and correlated dynamic
processes, whose individual trajectories keep a nonvanishing memory of their past time evolution. It is well
known that the recrossings of the origin by an ordinary one-dimensional diffusion trajectory generates a Lévy
(and thus renewal) process of index 6=1/2. We prove with theoretical and numerical arguments that this is the
special case of a more general condition, insofar as the recrossings produced by the dynamic FBM generates
a Lévy process with 0 << #<1. This result is extended to produce a satisfactory model for the fluorescent signal

of blinking quantum dots.
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I. INTRODUCTION

Recent progress in the spectroscopy of nanocrystals and
especially of blinking quantum dots (BQD’s) [1-3] is gener-
ating an increasing interest among theorists, who are chal-
lenged by the unusual statistical properties of the BQD spec-
tra. One of them is “aging” [3,4]—a striking property
yielding ergodicity breakdown [5] and enforcing reconsid-
eration of the results obtained in the approximation of time-
independent absorption or emission rate [6].

Recent studies of the spectral properties of the BQD
raised a question about a dynamic model, which may gener-
ate stochastic signals, exhibiting aging (see Ref. [7] for
progress in this direction). Stochastic signals or sequences
with non-Poisson statistics give rise to the phenomenon of
anomalous diffusion [8]—a subject of general interest for
different areas of physics. For anomalous diffusion the sec-
ond moment of the stochastic variable x exhibits scaling with
time, (x?(¢)) > *#, with H referred to as the scaling exponent.
This process is anomalous if H # 1/2. Super diffusion and
subdiffusion are realized for H>1/2 and H<1/2, respec-
tively. A well-known example of anomalous diffusion is frac-
tional Brownian motion (FBM) [9], yielding a nondecaying
correlation function between time ¢ and time —z,

(x(=1)x(2))
(x*(1))

usually interpreted as memory at the level of individual tra-
jectories [9,10]. In what follows we propose a dynamic ap-
proach to FBM, showing that the FBM memory resides in
the velocity x but not in the coordinate x. As far as the
stochastic variable x is concerned, we show that it obeys
renewal theory and we argue that the nondecaying corelation
function <x(t,)x(t,)>, evaluated only for positive times, is a
manifestation of the FBM nonergodic nature.

On the other hand, the new experimental results on BQD
[1-4] are related to a different form of anomalous diffusion
[11,3,6,5,12]. The emission intermittency of CdSe nanocrys-
tals generates a kind of telegraphic signal, indicating that the
system is either in the “light-on” state or in the “light-off”

=1_22H—l’ (1)
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state. This signal has been proved to be a renewal process
[3], meaning that each transition resets the system’s memory
to zero. To establish the relation with anomalous diffusion,
the experimental BQD signal is converted into a simplified
symbolic sequence. This can be done in two different ways.
The first symbolic sequence &, associates a transition (re-
gardless of whether it is “on-off” or “off-on”) with the values
1 or —1, according to a fair coin tossing prescription. In the
anomalous case of BQD’s the time distance between two
consecutive jumps is not exponential and the stochastic sig-
nal & (¢) generates subdiffusion, with aging properties [13].
The second symbolic sequence &,(7) results from mapping
the BQD fluorescent intensities 1(£) >0 and 1(z)=0 to+1 and
0, respectively. This stochastic signal has been recently stud-
ied by Margolin and Barkai [5] and the nonergodic nature of
the BQD processes has been demonstrated.

To understand why the stochastic signal &; generates sub-
diffusion when the time distance between two consecutive
coin tossing corresponds to the nonergodic BQD condition,
we note first of all that ordinary diffusion, with H=1/2, is
derived by a periodic coin tossing procedure, which makes
the time distance between the jumps in opposite directions
fluctuate according to the Poisson statistics. However, for the
optical signal generated by the BQD’s, the time intervals 7
between two consecutive transitions (i.e., the time intervals
between successive jumps) are distributed according to the
inverse power law

WD) = (0D 7T) + 1)1+, (2)

This means that the time intervals between the jumps are
much longer than in the Poisson case; i.e., the diffusion is
slower than the ordinary one. The experimental values of 6
for the BQD’s lie in the interval 0 << #<1; i.e., the distribu-
tion, Eq. (2), has an infinite first moment, <7>=co, It is
evident, therefore, that in the case of diffusion generated by
¢, the random walker waits a much longer time in a single
site than in the case of ordinary diffusion (periodically toss-
ing coin procedure), thus generating a slower process—
subdiffusion. It is known in fact [14] that the resulting scal-
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ing parameter H, is given by H,=60/2<1/2. Here the
subscript  means that in this case the departure from ordi-
nary diffusion, H=1/2, is of renewal origin. Therefore, one
may expect that the deviation from ordinary diffusion emerg-
ing from the BQD signal is of different origin than that from
FBM. In the latter case the anomalous behavior is related to
Eq. (1), which is erroneously considered to be incompatible
with renewal.

It is well known [15] that the distribution of origin re-
crossings times generated by ordinary diffusion yields i(7)
of Eq. (2) with #=1/2. We notice that this property is the
special case of the more general relation between 6 and H,

6=1-H, (3)

found years ago by Ding and Yang [16]. Therefore, one
would expect that this might lead to a model for BQD’s that
is not restricted to the condition §=1/2. On the basis of the
relation of Eq. (3) the parameter 6 would range from 0 to 1,
thereby meeting the observations of some authors. In fact,
while Brokmann et al. [3] proposed #=1/2, the authors of
Refs. [1,2] observed in the experiment different from 1/2
values for 6, although lying within the interval 0<<#<1.
Furthermore, the aging properties of the diffusion generated
by & () [13] and the nonergodic behavior of &(z) [5,17]
have been studied in the whole range 0 < #<<1 and the adop-
tion of the relation of Eq. (3) would yield a model for the full
range of nonergodic condition.

We conjecture that the reasons why the researchers in this
field missed this opportunity so far, are related to a prejudice
concerning FBM. Ding and Yang [16] have derived the im-
portant relation of Eq. (3) from the fractal dimensions of a
FBM trajectory. Later, the authors of Ref. [18], on the basis
of the trajectory memory of FBM, with the agreement of
other authors [19,20], argued that the recrossings events are
not renewal and that the derivation of Eq. (3) from the re-
newal assumption is questionable. They also quote their ear-
lier paper [21], where the renewal assumption was made, as
one more example of incorrect derivation. Ordinary diffusion
is a renewal process, and consequently, also the x-axis re-
crossing is a renewal one, known as a Lévy process with
index 6=1/2 [22,17]. In conclusion, in the current literature
there is a tendency to pay attention to the special case of 6
=1/2 as the only one acceptable to model BQD’s.

In this paper we prove that #=1/2 is a singularity in a
different sense: This is the only value from the whole inter-
val [0, 1] that is incompatible with the plausible conjecture
that the fluorescence of BQD’s is a complex phenomenon
generated by cooperation.

The outline of the article is as follows. In Sec. II we
illustrate a model with two variables x and &, establishing a
connection between renewal and cooperation (RC). The vari-
able ¢ takes into account memory and cooperation, and the
variable x generates renewal properties. In Sec. III we show
that in the asymptotic regime t— oo the variable x exhibits
the same statistical properties as the coordinate of FBM pro-
cess. In Sec. IV we support our arguments by means of nu-
merical simulation. Finally, we devote Sec. V to concluding
comments.
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II. RC MODEL

The RC model is is based on the equation

x=&(0). (4)

We assign to the stochastic velocity &(7) a long-range corre-
lation function £(1)&(1') =& ¢t—1"). The long-range proper-
ties of the variable &(¢) are determined by cooperation. In
what follows we argue that although the velocity is a corre-
lated process, the coordinate x turns out to be a renewal
variable.

Let us illustrate first the cooperative and memory proper-
ties of the RC model. We derive &(f) from the non-Ohmic
bath [23]:

&1 = >, c[x:(0)cos wit +v(0) ;" sin wit]. (5)

Here the initial conditions x;(0) and v;(0) are randomly se-
lected from the canonical distribution Z~! exp{-=; [wzxz(O)
+vz(0)]/ (27)} and the statistical weight of each oscillator is
determined by coefficient c; > w(5+1)/2

It is easy to see that the model is ergodic. Let us assume
that the frequencies w; range from wy=0 to wp. The frequen-
cies w; always can be assumed to be the rational numbers.
We divide the interval [0, wp] into N small intervals (N
>1) and introduce

i
;= 1 wp. (6)

Let us first evaluate the correlation function of &(¢) through
the time average. Using orthogonality of harmonic functions
with rational frequencies

T
cos(t)cos(t + 7)dt

cos(wt)cos[w;(t + 7)] = %J

0

% cos(w;7), (7)

one obtains

1 T N 2
ENét+1y= T f ENEr+ Ndr=2, 3(
0 i=1
(8)

Here T is the common period for all N oscillators in the bath.
Since the frequencies are rational, it is a multiple of 2. It is
clear that in the thermodynamic limit N> > 1, the period T
approaches infinity.

To prove that this is identical to an ensemble average we
subdivide each of the N cells into M smaller cells, M>1.
The total number of oscillators now is MN. The oscillators
belonging to the same ith cell have virtually the same fre-
quency w; (and, thus, the same weight c;), but different initial
conditions x;(,,)(0) and v;(,,(0). Summation over the “inter-
nal” index m within the ith cell is equivalent to the averaging
over the canonical distribution with temperature 7, and it
gives
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Now the correlation function for the non-Ohmic bath of MN
oscillators is written as follows:

N 2
EDE(+ Dy = MEDEG + Dy=MT, 5 cos(w;).

i=1 W;

(10)

The averaging over the canonical ensemble eliminates the
“off-diagonal” terms, (xx)=(vv;)=0, (xp)={(xv;)=0, and
yields the same result for the correlation function,

N 2
ENE1+ 1)y = (EDE1+ Dy=TS 5 cos(wm), (1)

i=1 W;

thus ensuring the ergodicity of the non-Ohmic bath.
It is straightforward to show that the correlation function
® (1) has the following asymptotics [24]:

(1) = (E0)ENKE) o sign(1 = §)/1°,  t—0. (12)

The cooperation is controlled by the parameter 8. The coef-
ficients (c;/ w;)* of harmonics in Eqs. (10) and (11) are pro-
portional to w?‘l. Thus 6=1 is equivalent to assigning the
same statistical weight to all the frequencies. The adoption of
either 6>1 or §<1 is equivalent to establishing a form of
cooperative motion, which yields a strong departure from the
white noise condition. Equation (12) shows that the non-
Ohmic condition 8§+ 1 leads either to a positive (for 0< &
< 1) or negative (for 1 <§<2) power-law tail of the corre-
lation function [23,24]. In the latter case a kind of balance
between the positive and negative values of the correlation
function can be established directly from Eq. (11):

0

This property of the correlation function is the necessary
condition for the realization of subdiffusion. Here we derive
it from the differential equation for the dispersion of the
stochastic variable x(7),

OIS 2<§>2f (t=7)PL7)dT. (14)
0
Differentiation of the both parts of Eq. (14) gives
LN
dl<x (1)) =2D(1), (15)
where
D(r) = <§2>f D (t)dt’ (16)
0

plays the role of time-dependent diffusion coefficient. By
differentiating the both parts of Eq. (15) and using that
(x*(1))ycr*, we obtain the following relation between the
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scaling parameter of anomalous diffusion H and the measure
of cooperation, given by the parameter o:

H=1-052. (17)

According to Eq. (12) the integrand in Eq. (16) is negative at
t—oo for 6> 1. If the negative contribution to the integral
exceeded the positive part, the diffusion coefficient (16)
would become negative for t— 0. This behavior is impos-
sible because it would mean nonphysical regression of the
random walker to the origin, x=0. In the opposite case of a
predominant positive part, the diffusion coefficient would ap-
proach a constant positive quantity, thereby producing ordi-
nary diffusion with H=1/2. This behavior is in conflict with
Eq. (17), which gives H<1/2 for 1 < §<2. Thus, the diffu-
sion coefficient (16) must vanish at — o, giving rise to the
condition (13).

Since the exact behavior of the correlation function at
short times is not important once the scaling regime in the
diffusion is achieved, we interpolate the asymptotics (12) to
t=0 by a smooth function, obeying condition (13) [25].

Let us now express the scaling condition in a more rigor-
ous form by moving from the single diffusion trajectory x(r)
to an ensemble of them, whose time evolution is described
by the probability distribution function p(x,¢). Thanks to the
Gaussian nature of &(r), it is straightforward to prove [26]
that at r— oo the distribution p(x, ) approaches the canonical
form

1 X2
P(x,t)=mew ~ ) (18)

where k=const.

Let us make the critical assumption, which we check nu-
merically in Sec. IV, that in the scaling regime when Eq. (18)
becomes valid, the process x(7) is renewal. The trajectory
x(t), which at =0 starts from the origin x=0, contributes to
the probability p(0,7), due to multiple recrossings of the x
axis at later times. Introducing the probability density ,(¢)
of n recrossings, with the last one to occur exactly at time ¢,
we get, for the density,

p(0,1) < 1/ o< 5 4y, (1). (19)
n=1

The renewal assumption means that the recrossings are sta-
tistically independent, thereby ensuring that the Laplace
transform of ¢, is equal to ¢/(u), with ¢{u) being the
Laplace transform of #(r)=4,(¢). In the Laplace representa-
tion we have, for u—0,

Jlu) .
1 - (u)

For the power-law distribution (2), with #<<1 and 1—12/(14)
«u’ Eq. (20) leads to the fundamental relation (3). In Sec.
IV we shall prove that the renewal property, which we use to
rederive the result of Ding and Yang [16], reflects properly
the physics of the RC model as well as the FBM.

PO,u) o o (20)
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III. RC MODEL AND FBM

Before confirming the renewal character of the the vari-
able x of the RC model, let us discuss the connection of this
variable with FBM. We remind the reader that Riemann-
Liouville (RL) and Weyl FBM is obtained by replacing the
ordinary derivative on the left-hand side of Eq. (4) with the
RL and Weyl fractional derivative, respectively [10]. In order
to establish a correspondence between the RC model and one
of the aforementioned models we study the behavior of the
correlation function for stochastic variable x(7):

b té);)(tz))E 1J2)_J dfzf dt; O (|1, - 11]).

(21)

Changing the variables u=(¢,+1#,)/2 and v=1,—1; and using
Eq. (14), the correlation function (21) can be expresses
through the dispersion as follows:

C(t1,1) = (0 )) + (1)) = Pl = 1)) (22)

In the scaling regime the dispersion grows according to the
relation {x*(r)) < #*#; i.e., the correlation function has the fol-
lowing asymptotics at ¢, — o, t,— and |t;—t,| — o°:

Cty. 1) = 7"+ 57 = [t — 1, (23)

We see that in the limit |¢;—1,|—co the result of ordinary
FBM is recovered. The asymptotic behavior in the RL FBM
model, which starts at =0, although being quite similar to
that of the standard FBM, is not exactly the same [27]. It is
worth mentioning that the correlation function (23) is a non-
stationary one.

IV. NUMERICAL EXPERIMENT

To prove that the renewal approach to Eq. (3) is correct,
we generate numerically the x-axis recrossing events for H
# 1/2. Then we examine the resulting signal with the same
technique as that applied to the luminescence of the BQD’s
to analyze their renewal and aging properties [3].

In the numerical simulations we use a discrete time series
t,=n=1,2,3,.... To generate the random variable &(n) it
would be appropriate to adopt the noise &(r) produced by Egq.
(5). However, for this noise to become ergodic and to include
the effects of cooperation the number of oscillators must be
very large and that creates numerical difficulties. For this
reason we use the algorithm proposed in Ref. [28] to gener-
ate noise with the correlation function given by Eq. (12).
This algorithm is very efficient in generating ergodic-
correlated stochastic signals without computational prob-
lems:

/2 -
§(n)—— E Zonin f Ve(y)cosmy)dy.  (24)

0

T p=—oo

Here the Z,’s are Gaussian random numbers with (Z,)=0 and
(Zﬁ): §(2) and the function ¢(y) is determined through its Fou-
rier series, ¢(y)=1+2Z;_, D (k)cos(2ky), where the Fourier
coefficient ®(k) is the binary correlator of the random ve-
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FIG. 1. Numerical results for the waiting time distribution func-
tion ¢(7) with H=1/3 (triangles) and H=2/3 (squares). The former
and latter conditions fit the solid line, 273, and dashed line,
0.7743, respectively.

locity &(r) calculated at r=1,2,.... It is straightforward to
check that the algorithm (24) generates a random sequence
with binary correlator ®(k). In our particular case the exact
correlation function is given by Eq. (11) and its asymptotics
is given by Eq. (12).

We use the algorithm (24) to generate the series &(n) and,
from this series, the diffusion trajectory x(n)=2}_, &(k) [25].
Then we record the times of recrossing the origin and label
by the symbol 7; the time interval between two consecutive
recrossing events. We refer to the times 7; as waiting times,
and we introduce ¢/ 7), being the corresponding distribution
density. Two trajectories, one superdiffusional (6=2/3, H
=2/3) and one subdiffusional (6=4/3, H=1/3), are gener-
ated, and the waiting time distribution functions are plotted
in Fig. 1. The slope of the logarithm of the distribution func-
tion at 7> 1 gives the value of 6 in Eq. (2). In both cases
excellent agreement with Eq. (3) is observed.

This, however, is not enough to guarantee the renewal
character of the x(¢) recrossings of the origin. To afford the
proof we did two more numerical simulations. In the first one
the normalized correlation function of the waiting times,

(ni=-D(n-7
Z-7

is calculated. It is clear from Fig. 2 that the waiting times are
o correlated, v;=J; i.e., they are statistically independent.
Since 6<2, the first and higher moments of the distribution
(2) diverge for a sequence of infinite length. In the numerical
calculations the length of the sequence was finite, thereby
yielding a finite value for 7 and 72, but long enough (n

Vik = (25)

FIG. 2. Normalized correlation function vy, given by Eq. (25). Tt
drops to zero after the first step, revealing no correlations (H
=1/3).
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FIG. 3. Aging of the waiting time distribution function for H
=1/3 (triangles) and H=2/3 (squares). Survival probabilities ¥,
are plotted for #,=0 (open symbols) and for 7,=100 (solid symbols).
Solid and dashed lines refer to the prediction of Eq. (26) for H
=1/3 and H=2/3, respectively.

~10°) to provide the convergence on the numerical proce-
dure.

The second simulation aims at confirming the renewal
nature of the time sequence {7;} by means of the numerical
experiment proposed in Ref. [4]. We evaluate the waiting
time before the occurrence of the next recrossing event by
setting the observation time at a distance #, from each and
every previous recorded crossing event. The waiting time
distribution function #(7) shown in Fig. 1 corresponds to 7,
=0. In the nonexponential case the probability of occurrence
of the first recurrence, evaluated at ¢,>0 (labeled as (ﬂ,a), is
different from that obtained by setting #,=0 and the relax-
ation of the corresponding survival probability \I’,a(T)
=f fzﬂ,ﬂ(t)dt becomes slower and slower with increasing ¢,.
That is why this effect is called aging. Although an exact
formula for ¢, (1) was derived in Ref. [29], here we use
approximation

1

Y(T+ 1)dt
0

ta+ja(t—ta)¢(t)dt
0

lﬂta(T) = (26)

proposed in Refs. [11,30]. Equation (26) gives very accurate
approximation for the distribution of the aged waiting times;
its accuracy is sufficient for the analysis of the numerical
data. It is convenient to illustrate the two results using ‘I’,a(T)
instead of ¢, (7) [31]. In Fig. 3 we plot W(7) =V, _o(7) and
‘I’,a(t), resulting from the direct numerical evaluation of ¢ 7)
and ¢, (7), together with the predictions of Eq. (26). For both
values of H considered, good agreement is observed, thus
confirming the renewal aging nature of the waiting time dis-
tribution function and, consequently, the renewal character of
the recrossing events. For large values of 7 a noticeable dif-
ference between numerical and analytical results appears.
This is due to insufficient statistical data for 7> 300. For the
same reason the fluctuations of the random variable 7 in Fig.
1 become stronger in this region.

There may be different types of aging. The aging emerg-
ing from the renewal character of a nonexponential process
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FIG. 4. Waiting time distribution (7). The sojourn times 7
refers to the states &(1)>0 and &(r) <0. The results for H=1/3
(triangles) are fitted by the exponential function 0.4 exp(-0.3x)
(solid line), and the results for H=2/3 (squares) are fitted by
0.01 exp(=0.1x) (dashed line).

yields Eq. (26). If for a dynamic process the aging fits Eq.
(26) at different values of ¢, this is strong evidence that this
process is renewal [4]. We indeed obtained a good fitting (not
shown here) to Eq. (26) for some values of 7, different from
100.

The RC model of Eq. (4) converts the long-memory tail
of Eq. (12) into the non-Poisson renewal properties of x(z).
What about the recrossings for the variable &(¢)? Figure 4
shows the numerical results for the probability distribution of
the corresponding waiting times #(7), generated by the ori-
gin (£=0) recrossing times of &(z). Both cases considered,
H=1/3 and H=2/3, generate exponential distributions of the
waiting times. This seems to conflict with the long tails of
Eq. (12) and with the alleged memory of &(¢). Actually, there
is no conflict, insofar as this is not a renewal process, as
confirmed by the extended correlation shown in Fig. 5. This
is not surprising since the correlation function of the signal
signé(r) has the same asymptotic properties as P(¢). Nu-
merical simulation, not shown here, confirms this expected
property.

V. CONCLUSIONS

The dynamical model (4) of FBM explains why the re-
newal character of the recrossing events is compatible with
memory and cooperation—the necessary attributes of a com-
plex model for BQD’s. In this model the memory and coop-

0.1

-0.1

FIG. 5. Normalized correlation function v, of Eq. (25) of wait-
ing times calculated for the stochastic variable &(r). Solid and
dashed lines are for H=1/3 and H=2/3, respectively. Long-range
correlations with alternating sign are clearly seen and should be
compared to the case of Fig. 2, where the correlation function drops
exactly to zero, after the first step.
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eration of the complex process are introduced through the
correlation function of velocity—i.e., nonrenewal stochastic
variable &(7). The particle displacement x(¢) is obtained as a
result of integration of the velocity, and it generates the re-
newal events at the moments when the particle crosses the
origin x=0. At the same time the dispersion of the coordinate
exhibits anomalous scaling o« with H# 1/2. The model
also establishes a simple relation, Eq. (3), between the scal-
ing exponents H and Lévy index 6. According to this relation
the ordinary diffusion #=H=1/2 is the only case when the
displacement exhibits scaling oV, without traces of coopera-
tion. From this point of view the ordinary diffusion is a sin-
gularity since any deviation from the condition 6=1/2 leads
to cooperation, making the diffusion process anomalous. Un-
like this singular case, a continuum of #’s corresponds to
anomalous diffusion along axis x, which, thus, should be
considered as a regular case of the FBM.

The proposed RC dynamical model, in application to the
BQD signal, is very promising since it extends the current
approach, limited to the singular case 6=1/2, to the whole

PHYSICAL REVIEW E 74, 021108 (2006)

range of #’s. It also explains the relation between the renewal
character of the signal and the expected cooperative proper-
ties of BQD’s.

It is obvious that Eq. (1) is irrelevant to the proposed RC
model, as well as to the RL FBM, since both these models
are defined for #>0. However, in the scaling regime |t —1,|
— 0 the RC model exhibits the asymptotical behavior of Eq.
(23)—namely, the same properties as ordinary FBM. Equa-
tion (1), which is usually interpreted as a form of infinite
memory, is related to Eq. (23), which is not a manifestation
of memory, but rather is a consequence of the ergodicity
breakdown [5]. These results will be discussed in a separate
publication.
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